

Constellation Launch Vehicle Elements

Stennis Space Center

LAS Crew Exploration Vehicle (CEV) (Crew Module / Service Module) Spacecraft Adapter Instrument Unit Forward Skirt **Upper Stage** J-2X Upper Stage Engine Interstage Forward Frustum First Stage

Crew Launch Vehicle

(5-Segment Reusable Solid Rocket Booster (RSRB))

Composite Shroud

LSAM

EDS Stage LOx/LH2 One J2S+ Engine Al-Li Tanks/Structures

Interstage

Core Stage LOx/LH2 Five RS-68 Engines Al-Li Tanks/Structures

Two 5-Segment RSRBs

Cargo Launch Vehicle

CxP ISS and Lunar Reference Mission

Propulsion Test Facility Trades for J-2X Altitude Testing

Altitude Test Facility Requirements

A3 Facility Requirements

- Start/Run Pressure: 0.16-0.4 psia (100-80 Kft)
- Run Duration: 550 sec
- Gimbal Angle: 5° (square pattern)
- Maximum Thrust Load: 1.0 Mlbf (vertical)
- Provide maximum flexibility for future test configurations
 - Sea-level testing
 - Stage testing
- Utilize existing propulsion test infrastructure, including cryogenics, barges, high pressure water, high pressure gas, engine assembly and warehousing facilities, skilled workforce, etc.

A-3 Altitude Test Facility Meeting J-2X Project Requirements

Stennis Space Center

Design

- Simplicity of "open diffuser" eliminates need for complex spray condensing chamber, dewatering & exhaust systems
- Design maximizes use of commercially available industrial components
- Key design elements based on established traditional rocket diffuser and chemical steam generator concepts supported by extensive operational data (40+ years)
- Early design risk mitigation thru testing of subscale diffuser and chemical steam generators at SSC

SSC Location Benefits

- Experienced test crews available
- Enables workforce flexing across test stands
- Enables efficient utilization of SSC's extensive propulsion test infrastructure
- Collocation of J-2X test facilities with engine assembly, integration and warehousing facility reduces logistics costs

A3 gives NASA at least one new large sea level & altitude capable test stand for the next 40 years

A3 Test Stand 3-D Layout

Test Cell and Thrust Takeout

A3 Test Stand 3-D Layout

Engine Deck and Superstructure

A3 Test Stand 3-D Layout Structure and Altitude Support Systems

Steam System

A3 Steam System Schematic Diagram

National Aeronautics and Space Administration

Chemical Steam Generators

CSG cans for facility operation risk mitigate testing have been fabricated and tested

Development CSG Can
National Aeronautics and Space Administration

Subscale Diffuser

Stennis Space Center

Stennis A3 Site Location

A3 Construction Site

A3 Construction Site

A3 Construction Site

